A Parallel Jacobi-type Lattice Basis Reduction Algorithm
نویسندگان
چکیده
This paper describes a parallel Jacobi method for lattice basis reduction and a GPU implementation using CUDA. Our experiments have shown that the parallel implementation is more than fifty times as fast as the serial counterpart, which is twice as fast as the well-known LLL lattice reduction algorithm.
منابع مشابه
A GPU Implementation of a Jacobi Method for Lattice Basis Reduction
This paper describes a parallel Jacobi method for lattice basis reduction and a GPU implementation using CUDA. Our experiments have shown that the parallel implementation is more than fifty times as fast as the serial counterpart, which is about twice as fast as the well-known LLL lattice reduction algorithm.
متن کاملA Polynomial time Jacobi Method for Lattice Basis Reduction
Among all lattice reduction algorithms, the LLL algorithm is the first and perhaps the most famous polynomial time algorithm, and it is widely used in many applications. In 2012, S. Qiao [24] introduced another algorithm, the Jacobi method, for lattice basis reduction. S. Qiao and Z. Tian [25] improved the Jacobi method further to be polynomial time but only produces a Quasi-Reduced basis. In t...
متن کاملA Hybrid Method for Lattice Basis Reduction
Lattice reduction has a wide range of applications. In this paper, we first present a polynomial time Jacobi method for lattice basis reduction by modifying the condition for the Lagrange reduction and integrating the size reduction into the algorithm. We show that the complexity of the modified Jacobi algorithm is O(n5 logB), where n is the dimension of the lattice and B is the maximum length ...
متن کاملParallel Lattice Basis Reduction Using a Multi-threaded Schnorr-Euchner LLL Algorithm
In this paper, we introduce a new parallel variant of the LLL lattice basis reduction algorithm. Our new, multi-threaded algorithm is the first to provide an efficient, parallel implementation of the Schorr-Euchner algorithm for today’s multi-processor, multi-core computer architectures. Experiments with sparse and dense lattice bases show a speed-up factor of about 1.8 for the 2-thread and abo...
متن کاملImproving the Parallel Schnorr-Euchner LLL Algorithm
This paper introduces a number of modifications that allow for significant improvements of parallel LLL reduction. Experiments show that these modifications result in an increase of the speed-up by a factor of more than 1.35 for SVP challenge type lattice bases in comparing the new algorithm with the state-of-the-art parallel LLL algorithm.
متن کامل